

Figure 6. Plot of log (vapor pressure, P) versus 1/T for (hfac)Cu(PMe₃).

repeated sublimation and freeze-pump-thaw cycles. Above 60 °C, the change in measured pressure with time was large and may result from thermal instability of this compound perhaps via the dissociation of PMe₃. The enthalpy of vaporization, ΔH_{vap} , of (hfac)Cu(PMe₃) was calculated to be approximately 10 kcal/mol from the plot of log (vapor pressure) versus 1/T shown in Figure 6. This value is comparable to that observed for Cu(hfac)₂.¹⁰

Attempts to measure the vapor pressures of $(acac)Cu(PMe_3)$ and $(tfac)Cu(PMe_3)$ were unsuccessful due to the inability to obtain constant vapor pressures at a given temperature. This may be due to the poor thermal stability of those species over extended time periods. Acknowledgment. We thank the NSF and Motorola for support of this work. M.J.H.-S. thanks the NSF Chemical Instrumentation program for the purchase of a low-field NMR spectrometer. T.T.K. acknowledges support from an NSF Presidential Young Investigator Award (CTS9058538).

Supplementary Material Available: For (hfac)Cu(PMe₃), Tables S1-S3 (structure determination summary), Tables S4 and S5 (bond lengths and angles), Tables S6 and S7 (anisotropic displacement coefficients, H atom coordinates, and isotropic displacement coefficients), Figures S1-S3 (atom-numbering schemes for molecules 1-3) and Figure S4 (unit cell diagram), for (dpm)Cu(PMe₁), Tables S8-S10 (structure determination summary), Tables S11 and S12 (bond lengths and angles), Tables S13 and S14 (anisotropic displacement coefficients, H atom coordinates, and isotropic displacement coefficients), Figure S5 (atom-numbering scheme for molecule 2), and Figure S6 (unit cell diagram), and for (dbm)Cu-(PMe₃), Tables S15-S17 (structure determination summary), Tables S18 and S19 (bond lengths and angles), Tables S20 and S21 (anisotropic displacement coefficients, H atom coordinates, and isotropic displacement coefficients), and Figure S7 (unit cell diagram), for naphthalene, Cu-(hfac)₂, and (hfac)Cu(PMe₃), Figures S8-S10 (vapor pressure vs time), and textual presentations of the experimental procedure for the (hfa)-Cu(PMe₃) vapor pressure measurement and spectroscopic characterization data for (tfac)Cu(PMe₃), (acac)Cu(PMe₃), (dpm)Cu(PMe₃), (dbm)Cu(PMe₃), (tfac)Cu(PMe₃)₂, and (acac)Cu(PMe₃)₂ (43 pages); Tables S22-S24 (observed and calculated structure factors for (hfac)-Cu(PMe₃), (dpm)Cu(PMe₃), and (dbm)Cu(PMe₃)) (39 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824

Hydrothermal Polychalcogenide Chemistry. Stabilization of $[Mo_9Se_{40}]^{8-}$, a Cluster of Clusters, and $[Mo_3Se_{18}]_n^{2n-}$, a Polymeric Polyselenide. Novel Phases Based on Trinuclear $[Mo_3Se_7]^{4+}$ Building Blocks

Ju-Hsiou Liao and Mercouri G. Kanatzidis*

Received May 15, 1991

A polymeric Mo polyselenide, $K_2Mo_3Se_{18}$, and a large molecular cluster Mo polyselenide, $K_8Mo_9Se_{40}$ ·4H₂O, were synthesized by the hydrothermal method. The reaction of Mo, K_2Se_4 , and H₂O in a 1:1.5:22.2 ratio in a vacuum-sealed Pyrex tube at 135 °C for 3 days yielded black platelike crystals of K2M03Se18 (I). The reaction of MoO3, K2Se2, and H2O in a 1:2:22.2 ratio under the same conditions as above yielded black chunky crystals of $K_8Mo_9Se_{40}$ 4H₂O (II). Both compounds were obtained in ~20% yield. The structures were determined by single-crystal X-ray diffraction techniques. Crystal data for K2M03Se18: monoclinic $P2_1, Z = 2, a = 10.277$ (6) Å, b = 12.66 (1) Å, c = 10.624 (8) Å, $\beta = 116.82$ (5)°, V = 1233 (2) Å³; $2\theta_{max}$ (Mo K α) = 45°; number of data measured 1824, number of unique data 1608, number of data having $F_0^2 > 3\sigma(F_0^2)$ 1382, number of variables 207, number of atoms 23; $\mu = 267 \text{ cm}^{-1}$; final R = 0.052 and $R_w = 0.086$. Crystal data for K₈Mo₉Se₄₀-4H₂O: triclinic $P\bar{1}, Z = 2, a = 10.312$ (8) Å, b = 18.55 (3) Å, c = 18.57 (2) Å, $\alpha = 87.6$ (1)°, $\beta = 87.57$ (7)°, $\gamma = 84.0$ (1)°, V = 3523 (8) Å³; $2\theta_{max}$ (Mo K α) = 45°; number of data measured 9888, number of unique data 8638, number of data having $F_0^2 > 4\sigma(F_0^2)$ 3592, number of variables 546, number of atoms 65; $\mu = 224$ cm⁻¹; final R = 0.092 and $R_w = 0.108$. I and II have rather complicated structures. I contains the $[Mo_3(Se)(Se_2)_3(Se_3)(Se_4)_2]_n^{2n}$ polymeric anion which contains $[Mo_3Se_7]^{4+}$ clusters as building blocks. It has a zigzag chain structure which is formed by two parallel sets of face-to-face $[Mo_3Se_7]^{4+}$ clusters cross-linked by Se₄²⁻ ligands. The zigzag chains are then arranged side by side and interact through weak Se-Se contacts generated by a Se atom of a Se_3^{2-} ligand of one chain and the triangular face of Se atoms from the three bridging Se_2^{2-} ligands of a $[Mo_3Se_7]^{4+}$ cluster in another chain. $[Mo_3Se_{40}]^{8-}$ contains three trinuclear [Mo₃Se₇]⁴⁺ subclusters which are "glued" together by the two monoselenide ions. One monoselenide ion belongs to a $[Mo_3Se_7]^{4+}$ core being coordinated to three Mo atoms and at the same time interacting with the triangular face of three Se atoms of Se₂²⁻ bridging ligands of another $[Mo_3Se_7]^{4+}$ subcluster. The other monoselenide ion interacts with six Se atoms of $\operatorname{Se_2^{2^-}}$ bridging ligands of two [Mo₃Se₇]⁴⁺ subclusters. Two separate [Mo₉Se₄₀]⁸⁻ clusters come in close contact (2.98 Å) in the solid state through two terminal Se₂²⁻ ligands related by an inversion center.

Introduction

Metal polychalcogenides are of longstanding interest in the field of coordination and solid-state chemistry.¹ Conventionally, syntheses of molecular metal polychalcogenides are carried out in solution at ambient temperature.^{2,3} Recently, molten salts have

 ⁽a) Ansari, M. A.; Ibers, J. A. Coord. Chem. Rev. 1990, 100, 223-266.
 (b) Kolis, J. W. Coord. Chem. Rev. 1990, 105, 195-219.
 (c) Draganjac, M.; Rauchfuss, T. B. Angew. Chem., Int. Ed. Engl. 1985, 24, 742-757.
 (d) Müller, A. Polyhedron 1986, 5, 323-340.
 (e) Kanatzidis, M. G. Comments Inorg. Chem. 1990, 10, 161-195.

^{(2) (}a) Flomer, W. A.; O'Neal, S. C.; Cordes, A. W.; Jetter, D.; Kolis, J. W. Inorg. Chem. 1988, 27, 969-971. (b) Wardle, R. W. M.; Mahler, C. H.; Chau, C.-N.; Ibers, J. A. Inorg. Chem. 1988, 27, 2790-2795. (c) Adel, J.; Weller, F.; Dehnicke, K. Z. Naturforsch. 1988, 43B, 1094-1100. (d) Eichhorn, B. W.; Haushalter, R. C.; Cotton, F. A.; Wilson, B. Inorg. Chem. 1988, 27, 4085-4095. (e) Strasdeit, H.; Krebs, B.; Henkel, G. Inorg. Chim. Acta 1984, 89, L11-L13.

been used to synthesize new solid-state metal polychalcogenides.^{4,5} Our interest in exploring unusual conditions for the stabilization and crystallization of new metal-chalcogenide frameworks led us to consider hydrothermal techniques as a possible alternative. Despite the invaluable contributions of hydrothermal techniques in important areas such as zeolite synthesis,6 quartz⁷ and potassium titanyl phosphate (KTP)⁸ crystal growth, and synthesis of other interesting oxides,⁹ the application of hydrothermal methods to prepare ternary metal chalcogenides is very rare in the literature, except with some notable examples.¹⁰ Hydrothermal conditions with metal sulfides have been examined in the past primarily by geologists to study the formation of sulfide minerals. Recently, hydrothermal and methanothermal conditions using CO₁²⁻ and OH⁻ as mineralizers were used to digest sulfides and selenides of main-group metals to yield new phases such as $Cs_4Sn_3S_{12}$. 2H₂O,^{10a} RbSb₃Se₅,^{10b} Rb₂Sb₄S₇,^{10c} KAsSe₃·H₂O,^{10d} RbAsSe₃· 0.5H₂O,^{10d} CsAsSe₃·0.5H₂O,^{10d} Cs₄Sn₂Se₆,^{10e} and K₄Sn₃Se₈.^{10f} Furthermore, Bedard et al. recently reported that novel germanium-sulfide network structures could be synthesized by hydrothermal methods similar to those used for zeolites.¹¹ Most of these compounds contain monochalcogenide ligands. We felt that if polychalcogenide ligands were used instead, as mineralizers as well as reagents, *polychalcogenide* phases may be accessible. As part of our recent investigations, in this technique, we used various Se,²⁻ ligands in combination with metals or metal oxides as starting materials to synthesize new ternary metal polyselenides. In a previous communication, we reported the hydrothermal synthesis of a large Mo polychalcogenide cluster, $K_{12}Mo_{12}Se_{56}$,¹² with unexpected and unprecedented structural features. We report here our further investigations into the hydrothermal chemistry of the K/Mo/Se system which revealed two more new Mo polyselenides: K₂Mo₃Se₁₈ (I) and K₈Mo₉Se₄₀·4H₂O (II), exhibiting not only novel structures but also features not found in K_{12} -Mo₁₂Se₅₆.

Experimental Section

All work was done under a nitrogen atmosphere. Mo and MoO3 were purchased from Alfa Products Inc. Potassium polyselenide K_2Se_x (x = 2, 4) was prepared in liquid ammonia from potassium metal and elemental selenium in a 2:x ratio. The X-ray powder diffraction patterns were recorded with a Phillips XRG-3000 computer controlled powder diffractometer operating at 40 kV/20 mA. Ni-filtered Cu radiation was used. Elemental analyses were performed on a JEOL JSM-35C scanning

- (3) (a) Kanatzidis, M. G.; Huang, S.-P. Angew. Chem., Int. Ed. Engl. 1989, 28, 1513–1514. (b) Kanatzidis, M. G.; Dhingra, S. Inorg. Chem. 1989, 28, 2024–2026. (c) Huang, S.-P.; Dhingra, S.; Kanatzidis, M. G. Polyhedron 1990, 9, 1389-1395. (d) Kanatzidis, M. G.; Huang, S.-P. J. Am. Chem. Soc. 1989, 111, 760-761.
- (4) (a) Kanatzidis, M. G. Chem. Mater. 1990, 2, 353-363. (b) Kanatzidis, M. G.; Park, Y. J. Am. Chem. Soc. **1989**, 111, 3767–3769. (c) Park, Y.; Kanatzidis, M. G. Angew. Chem., Int. Ed. Engl. **1990**, 29, 914–915. (d) Kanatzidis, M. G.; Park, Y. Chem. Mater. 1990, 2, 99-101.
- (5) Sunshine, S. A.; Kang, D.; Ibers, J. A. J. Am. Chem. Soc. 1987, 109, 6202-6204. (b) Kang, D.; Ibers, J. A. Inorg. Chem. 1988, 27, 549-551. (6) Barrer, R. M. Hydrothermal Chemistry of Zeolites; Academic Press:
- New York, 1982 Laudise, R. A. Chem. Eng. News 1987, 65 (Sept 28), 30-43
- Stucky, G. D.; Phillips, M. L. F.; Gier, T. E. Chem. Mater. 1989, 1, 492-509
- (9) (a) Huan, G.; Jacobson, J. W.; Corcoran, E. W. Chem. Mater. 1990, 2, 91-93. (b) Corcoran, E. W. Inorg. Chem. 1990, 29, 158-160. (c) Mundi, L. A.; Strohmaier, K. G.; Goshom, D. P.; Haushalter, R. C. J. Am. Chem. Soc. 1990, 112, 8182-8183. (d) Haushalter, R. C. Inorg. Chem. 1989, 28, 2904-2905.
- Chem. 1989, 28, 2904-2905.
 (10) (a) Sheldrick, W. S. Z. Anorg. Allg. Chem. 1988, 562, 23-30. (b) Sheldrick, W. S.; Hauser, H.-J. Z. Anorg. Allg. Chem. 1988, 557, 98-104. (c) Sheldrick, W. S.; Hauser, H.-J. Z. Anorg. Allg. Chem. 1988, 557, 105-111. (d) Sheldrick, W. S.; Kaub, J. Z. Anorg. Allg. Chem. 1986, 535, 179-185. (e) Sheldrick, W. S.; Braunbeck, H. G. Z. Naturforsch. 1989, 448, 851-852. (f) Sheldrick, W. S.; Braunbeck, H. G. Z. Naturforsch. 1989, 448, 851-852. (f) Sheldrick, W. S.; Braunbeck, H. G. Z. Naturforsch. 1989, 448, 851-852. (f) Sheldrick, W. S.; Naturforsch. 1988, 438, 249-252. (g) Parise, J. B. Science 1991, 251, 293-294. (h) Parise, J. B. J. Chem. Soc., Chem. Commun. 1990, 1553-1554.
 (11) Bedard, R. L.; Wilson, S. T.; Vail, L. D.; Bennett, E. M.; Flanigen, E. M. Zeolites; Facts, Figures, Future; Jacobs, P. A., van Santen, R. A., Eds.; Elsevier: New York, 1989; pp 375-387.
 (12) Liao, J.-H.; Kanatzidis, M. G. J. Am. Chem. Soc. 1990, 112,
- (12) Liao, J.-H.; Kanatzidis, M. G. J. Am. Chem. Soc. 1990, 112, 7400-7402.

Table I. Data for the Crystal Structure Analysis^a of K₂Mo₃Se₁₈ and K8M09Se48.4H2O

• • • •		
formula	$K_2Mo_3Se_{18}$	K ₈ Mo ₉ Se ₄₈ ·4H ₂ O
fw	1724.3	4398.7
a, Å	10.277 (6)	10.312 (8)
b, Å	12.66 (1)	18.55 (3)
c, Å	10.624 (8)	18.57 (2)
α , deg	90.0	87.6 (1)
β , deg	116.82 (5)	87.57 (7)
γ , deg	90.00	84.0 (1)
$V, Å^{3}; Z$	1233; 2	3523; 2
space group	P2 ₁	PĪ
$D_{\rm calcd}, {\rm g/cm^3}$	4.64	4.08
μ (Mo K α), cm ⁻¹	267	224
2θ range, deg	4-45	4-45
no. of data collected	1824	9888
no. of unique data	1608	8638
no. of data used	1382 $(F_0^2 > 3\sigma(F_0^2))$	$3592 (F_0^2 > 4\sigma(F_0^2))$
min/max abs cor	0.40/0.99	0.71/0.99
no. of variables	207	546
no. of atoms per asym unit	23	65
final R/R_{w}^{b} %	5.2/8.6	9.2/10.8

^aAt -120 °C. ^bR = $\Sigma(|F_o| - |F_c|)/\Sigma|F_o|$; $R_w = {\Sigma w(|F_o| - |F_c|)^2/$ $\Sigma w |F_{o}|^{2} |^{1/2}$.

Table II. Fractional Atomic Coordinates and B_{eq} Values for K-Mo-Se-

x	У	Z	B _{eq} , Å ²
0.9101 (5)	0.2306 (4)	0.5096 (5)	0.6 (1)
0.7514 (5)	0.239	0.6609 (5)	0.7 (1)
1.0540 (5)	0.2517 (4)	0.8013 (5)	0.6 (1)
0.8955 (6)	0.3909 (6)	0.6358 (6)	1.3 (1)
0.9100 (7)	0.1551 (6)	0.2759 (7)	1.7 (2)
0.8919 (7)	0.3381 (6)	0.2923 (6)	1.3 (1)
0.8894 (7)	0.9054 (6)	0.6891 (7)	2.0 (2)
1.1006 (6)	0.1014 (6)	0.6678 (6)	1.2 (1)
1.1909 (6)	0.2642 (6)	0.6409 (7)	1.5 (1)
0.8928 (7)	0.2820 (6)	0.9308 (6)	1.3 (1)
0.9077 (6)	0.1111 (5)	0.8543 (6)	1.1 (1)
0.7363 (6)	0.0857 (5)	0.4960 (6)	1.1 (1)
0.6269 (6)	0.2450 (6)	0.3854 (6)	1.1 (1)
1.1740 (7)	0.4348 (6)	0.9024 (7)	1.8 (2)
1.4217 (7)	0.4282 (6)	1.0738 (6)	1.5 (1)
0.5642 (7)	-0.0363 (6)	0.7027 (7)	1.5 (1)
0.5263 (6)	0.1495 (5)	0.6714 (6)	1.1 (1)
1.2831 (7)	0.1891 (6)	1.0340 (7)	1.4 (1)
1.2375 (8)	0.0043 (6)	1.0190 (8)	2.2 (2)
0.5389 (6)	0.4265 (6)	0.8310 (6)	1.3 (1)
0.5544 (6)	0.3871 (6)	0.6217 (6)	1.5 (1)
0.736 (2)	0.652 (2)	0.661 (2)	3.2 (4)
0.585 (2)	0.190 (2)	1.007 (2)	3.7 (5)
	x 0.9101 (5) 0.7514 (5) 1.0540 (5) 0.8955 (6) 0.9100 (7) 0.8919 (7) 0.8894 (7) 1.1006 (6) 1.1909 (6) 0.7363 (6) 0.7363 (6) 0.6269 (6) 1.1740 (7) 1.4217 (7) 0.5642 (7) 0.5263 (6) 1.2375 (8) 0.5389 (6) 0.5389 (6) 0.736 (2) 0.585 (2)	xy 0.9101 (5) 0.2306 (4) 0.7514 (5) 0.239 1.0540 (5) 0.2517 (4) 0.8955 (6) 0.3909 (6) 0.8955 (6) 0.3909 (6) 0.8919 (7) 0.3381 (6) 0.8919 (7) 0.3381 (6) 0.894 (7) 0.9054 (6) 1.1006 (6) 0.1014 (6) 1.1909 (6) 0.2642 (6) 0.9077 (6) 0.1111 (5) 0.7363 (6) 0.0857 (5) 0.6269 (6) 0.2450 (6) 1.1740 (7) 0.4348 (6) 1.4217 (7) 0.4282 (6) 0.5263 (6) 0.1495 (5) 1.2831 (7) 0.1891 (6) 1.2375 (8) 0.0043 (6) 0.5389 (6) 0.4265 (6) 0.5384 (6) 0.3871 (6) 0.736 (2) 0.652 (2) 0.585 (2) 0.190 (2)	xyz 0.9101 (5) 0.2306 (4) 0.5096 (5) 0.7514 (5) 0.239 0.6609 (5) 1.0540 (5) 0.2517 (4) 0.8013 (5) 0.8955 (6) 0.3909 (6) 0.6358 (6) 0.9100 (7) 0.1551 (6) 0.2759 (7) 0.8919 (7) 0.3381 (6) 0.2923 (6) 0.8944 (7) 0.9054 (6) 0.6678 (6) 1.1006 (6) 0.1014 (6) 0.6678 (6) 1.1909 (6) 0.2642 (6) 0.9308 (6) 0.9077 (6) 0.1111 (5) 0.8543 (6) 0.7363 (6) 0.0857 (5) 0.4960 (6) 0.6269 (6) 0.2450 (6) 0.3854 (6) 1.1740 (7) 0.4282 (6) 1.0738 (6) 0.5642 (7) -0.0363 (6) 0.7027 (7) 0.5263 (6) 0.1495 (5) 0.6714 (6) 1.2831 (7) 0.1891 (6) 1.0340 (7) 1.2375 (8) 0.0043 (6) 1.0190 (8) 0.5389 (6) 0.4265 (6) 0.8310 (6) 0.5544 (6) 0.3871 (6) 0.6217 (6) 0.5584 (6) 0.3871 (6) 0.6217 (6) 0.5585 (2) 0.190 (2) 1.007 (2)

^aEstimated standard deviations are given in parentheses.

electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) detector.

Synthesis of $[K_2Mo_3Se_{18}]_n$ (I). A mixture of 0.048 g (0.5 mmol) of Mo metal, 0.296 g (0.75 mmol) of K₂Se₄, and 0.2 mL of H₂O was placed in a Pyrex tube, which was vacuum-sealed and heated at 135 °C for 3 days. Black platelike crystals of $K_2Mo_3Se_{18}$ (I) formed, and they were isolated by filtration and washed with methanol. Yield: $\sim 20\%$.

Synthesis of $K_8Mo_9Se_{40}$ ·4H₂O (II). The reaction of 0.072 g (0.5 mmol) of MoO₃, 0.236 g (1.0 mmol) of K₂Se₂, and 0.2 mL of H₂O under the same conditions as above yielded black chunky crystals of K8M09-Se40-4H2O (II). The products were isolated by filtration and washed with methanol. The compound was obtained in $\sim 20\%$ yield.

In order to ensure product homogeneity, the X-ray powder diffraction (XRD) diagrams of both products were compared with, and found to be identical with, those calculated from the single-crystal data. The XRD powder patterns were calculated using the atom coordinates determined from the single-crystal data with the program POWD 10.13 Comparison tables between the calculated and observed d_{hkl} spacings for these com-

⁽¹³⁾ Smith, D. K.; Nichols, M. C.; Zolensky, M. E. POWD 10: A FORTRAN Program for Calculating X-ray Powder Diffraction Patterns (Version 10). Pennsylvania State University, 1983.

Hydrothermal Polychalcogenide Chemistry

pounds are deposited in the supplementary material.

X-ray Crystallographic Studies. The crystallographic data were collected on a Nicolet P3/F diffractometer using an $\omega/2\theta$ scan mode and Mo K α radiation. The crystals were mounted on the tip of glass fibers. Crystal data and details for data collection and refinement for both compounds are shown in Table I. The intensities of three check reflections were monitored every 100 reflections to detect possible decay during the data collection period. An empirical absorption correction was applied to all data on the basis of ψ scans for several reflections. An additional absorption correction following the DIFABS¹⁴ procedure was applied to isotropically refined data. All structures were refined by full-matrix least-squares techniques with the SDP¹⁵ package of crystallographic programs running on a VAXstation 2000 computer.

Solution of the Structure of $[K_2Mo_3Se_{18}]_{rr}$. Although crystals of I also diffract weakly, there was no observed decay. The data were collected using a 2°/min scan speed at -120 °C. The structure was solved with direct methods using SHELXS-86¹⁶ and was refined normally. No disorder was found in the unit cell of I. All atoms were refined anisotropically. The final R and R_w values were 5.2% and 8.6%, respectively. The enantiomorph was also refined to completion but gave slightly higher R values (~0.5%) and estimated standard deviations (esd's). There were no significant residual peaks in the final electron density difference map. The final coordinates and thermal parameters and their esd's of all atoms are shown in Table II.

Solution of the Structure of K8M02Se40.4H2O. Crystals of II diffracted weakly. Initially, data were collected at room temperature, using Cu radiation from a rotating-anode source for a crystal which decayed by \sim 50% (based on the intensities of three standard reflections) during the data collection period. The scan speed was 6°/min. The structure of the anion was solved using this data with SHELXS-86 and was refined down to R = 14%. At this point, it was evident from electron difference density maps that some of the K atoms were disordered in the unit cell and that water molecules might be present. Only five of the eight K atoms could be located with confidence. The poor quality of the data did not permit the resolution of the positions of the remaining atoms and prompted us to recollect another data set from a another crystal at -120 °C using sealed-tube Mo radiation. The scan speed was 2°/min. No decay was detected in this second set of data. Although these new data were significantly better, still they were not superb and only $\sim 40\%$ of the reflections were observed. The structure was solved again ab initio, and the same Mo/Se framework was found. Electron difference density maps calculated from this improved data set revealed the positions of four ordered K atoms and four disordered K atoms. On the basis of refinement of the temperature factors of the disordered K atoms, their occupancy was deemed to be 0.50. Four oxygen atoms belonging to water molecules were also located. At this point it is reasonable to suggest that the likely cause of the decay in crystallinity of the first crystal was due to loss of solvated water. No disorder was found in the anion. The Mo, Se, and K atoms were refined anisotropically, while the oxygen atoms were refined isotropically. The final R and R_w values were 9.2% and 10.8%, respectively. There were no significant residual peaks in the final electron density difference map. The final coordinates and thermal parameters and their esd's of all atoms are shown in Table III.

Results and Discussion

Synthesis. The syntheses of $K_2Mo_3Se_{18}$ and $K_8Mo_9Se_{40}$ ·4H₂O were performed in thick-wall Pyrex glass tubes at 130–140 °C. Although a very small amount of water was used (12% filling), at no time during the reaction was it completely evaporated and the crystals grew in the liquid phase of the container. The small volume of water used is beneficial because it generates supersaturation conditions and promotes crystal growth. Crystals of $K_2Mo_3Se_{18}$ rarely grow larger than 0.5 mm. However, crystals of $K_8Mo_9Se_{40}$ ·4H₂O have been obtained as large as ~5 mm on an edge. The amount of reagents and water used is important to ensure phase reproducibility. We have found that minor variations in synthetic conditions lead to other phases which currently are under investigation.¹⁷ I is insoluble in water and

- (14) Walker, N.; Stuart, D. DIFABS: An Empirical Method for Correcting Diffractometer Data for Absorption Effects. Acta Crystallogr. 1983, A39, 158-166.
- (15) Frenz, B. A. The Enraf-Nonius CAD4 SDP System. Computing in Crystallography; Delft University Press: Delft, Holland, 1978; pp 64-71.
- (16) Sheldrick, G. M. In Crystallographic Computing 3; Sheldrick, G. M., Kruger, C., Goddard, R., Eds.; Oxford University Press: Oxford, U.K., 1985; pp 175-189.
 (12) J. M. B. K., and J. M. C., Washington, S. M. S.
- (17) Liao, J.-H.; Hill, L.; Kanatzidis, M. G. Work in progress.

Table III. Fractional Atomic Coordinates and B_{eq} Values for the K₈Mo₉Se₄₀·4H₂O^a

0 7 7	· •			
atom	x	у	Z	$B_{eq}, Å^2$
Mol	0.1803 (6)	0.9003 (5)	0.6476 (3)	3.9 (2)
Mo2	-0.0490 (5)	0.8866 (4)	0.7266 (3)	2.9 (2)
Mo3 Mo4	-0.0189(5)	0.8364(5)	0.5891(3)	3.5 (2)
Mo5	0.3900(0) 0.1642(5)	0.6063(4) 0.5922(4)	0.7708(3) 0.8506(3)	2.0(2)
Mo6	0.2030 (6)	0.5328 (5)	0.7159 (4)	3.9 (2)
Mo7	0.4907 (5)	1.1616 (4)	0.9112 (4)	3.0 (2)
Mo8	0.5137 (6)	1.1808 (4)	0.7625 (4)	3.4 (2)
Mo9	0.2701 (6)	1.1849 (4)	0.8295 (4)	3.7 (2)
Sel	-0.0321(7) 0.4325(7)	0.9677 (6)	0.6152(5) 0.6513(4)	5.0(2)
Se2	0.3065 (8)	1.0096 (6)	0.6130 (5)	7.7(3)
Se4	-0.2191 (8)	0.9774 (5)	0.7875 (5)	5.1 (2)
Se5	-0.1576 (7)	0.8691 (5)	0.8532 (4)	3.5 (2)
Se6	-0.0761 (7)	0.7380 (7)	0.5025 (4)	5.6 (3)
Se/	-0.1505 (7)	0.8596 (6)	0.4743(4)	6.1
Se9	0.1712(0) 0.1370(7)	0.8517(5)	0.7708(3) 0.7735(5)	$\frac{2.2}{47}$
Se10	-0.0767 (6)	0.7550 (5)	0.6984 (3)	2.2 (2)
Sell	-0.2432 (6)	0.8414 (5)	0.6611 (3)	3.1 (2)
Se12	0.1893 (7)	0.8655 (7)	0.5123 (4)	6.5 (3)
Se13	0.2109 (6)	0.7731 (6)	0.5994 (3)	4.0 (2)
Sel4	0.1809 (6)	0.6665 (5)	0.7371(3)	2.9 (2)
Sel6	0.5091(7)	0.0193(0) 0.7205(5)	0.7852(4) 0.7260(4)	$\frac{4.4}{3.8}$ (2)
Sel7	-0.0092 (6)	0.6902 (5)	0.9013 (3)	2.7(2)
Se18	0.0403 (7)	0.5857 (6)	0.9778 (4)	3.8 (2)
Se19	0.0764 (8)	0.5489 (7)	0.5990 (4)	6.7 (3)
Se20	0.152 (1)	0.4308 (6)	0.6312 (5)	8.6 (3)
Se21	0.3896 (7)	0.5449 (5)	0.8963(4)	3.6 (2)
Se22	0.1574(7)	0.4574(5)	0.8312(3) 0.8306(5)	4.1(2)
Se24	-0.0206 (6)	0.5374 (5)	0.7888 (4)	3.1 (2)
Se25	0.4327 (7)	0.4731 (6)	0.7361 (5)	5.2 (2)
Se26	0.4078 (7)	0.5663 (6)	0.6399 (4)	5.8 (2)
Se27	0.4284 (7)	1.0723 (5)	0.8250 (4)	2.8 (2)
Se20	0.5779(7) 0.5972(7)	1.0030 (3)	1.0027(4) 1.0349(4)	4.2 (2)
Se30	0.6352(7)	1.1007 (6)	0.6644 (4)	4.1 (2)
Se31	0.6466 (8)	1.2269 (6)	0.6498 (5)	5.3 (2)
Se32	0.0675 (7)	1.1164 (6)	0.8226 (5)	4.9 (2)
Se33	0.0277 (8)	1.2433 (7)	0.8226 (8)	9.4 (4)
Se34	0.6112(7)	1.2610 (5)	0.8488 (5)	4.1 (2)
Se36	0.7104(0) 0.3034(7)	1.1434 (5)	0.8400 (4)	5.2(2)
Se37	0.3430 (7)	1.2875 (6)	0.7498 (6)	5.4 (2)
Se38	0.3142 (7)	1.2678 (6)	0.9286 (6)	5.4 (3)
Se39	0.2575 (7)	1.1514 (6)	0.9676 (5)	4.9 (2)
Se40	0.4239 (8)	0.3935 (6)	0.8667 (7)	6.9 (3)
K1 K2	0.4/4 (2)	0.137(2) 0.893(1)	0.5158(9) 0.817(1)	7.8 (8) 5.2 (5)
K3	0.053(2)	0.847(2)	0.317(1) 0.332(1)	9.2 (9)
K4	0.329 (2)	0.293 (1)	0.101 (1)	6.4 (6)
K5	0.090 (2)	0.821 (2)	0.002 (2)	6 (1)
K5′	0.097 (3)	-1.026(2)	0.050 (2)	4.5 (9)
K6 K6/	0.270 (3)	0.565 (2)	0.110(1)	6(1) 20(9)*
ко К7	-0.233(4)	0.718(3) 0.506(3)	0.048(2) 0.639(2)	2.9 (8) ¹ 4 (1)*
K7′	0.260 (3)	0.431 (3)	0.051 (2)	$\frac{1}{7(1)}$
K8	-0.527 (4)	1.375 (3)	0.547 (2)	7 (1)
K8′	0.345 (5)	0.521 (3)	0.474 (3)	9 (1)*
01	0.238 (6)	0.621 (5)	0.453 (4)	10 (2)*
02	0.080 (6)	0.008 (3) 0.281 (4)	0.355 (3)	9 (2)* 6 (1)*
04	0.195 (4)	0.613 (3)	0.253(3)	5 (1)*
	- · · · · · · · · · · · · · · · · · · ·		······································	- \^/

^aEstimated standard deviations are given in parentheses. Starred values indicate atoms were refined anisotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as follows: $(4/3)[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos \gamma)B(1,2) + ac(\cos \beta)B(1,3) + bc(\cos \alpha)B(2,3)].$

most organic solvents, while II is soluble in water, dimethylformamide, and dimethyl sulfoxide. On the basis of their structures (vide infra) and the fact that I and II are diamagnetic, the Mo formal oxidation state can be assigned as +4. The for-

Figure 1. ORTEP representation of a stereoview of two "interlocking" zigzag chains of $[Mo_3Se_{18}]_n^{2n}$. The isolated open circles are K atoms.

mation of I and II involves complicated redox reactions between Mo, MoO₃, and K₂Se_x. In the case of K₂Mo₃Se₁₈, molybdenum metal is oxidized by the Se-Se bonds in Se₄²⁻, while in the case of K₈Mo₉Se₄₀·4H₂O, Mo⁶⁺ in MoO₃ is reduced by Se₂²⁻. Use of longer polyselenides such as Se₄²⁻, Se₅²⁻, and Se₆²⁻, to reduce MoO₃, was found unsuitable because oxidation to elemental selenium was favored.

It is interesting to comment on how these K/Mo/Se phases might form. The fact that the $[Mo_3Se_7]^{4+}$ core occurs in all three phases characterized thus far suggests that the core has considerable thermodynamic stability and forms readily under hydrothermal conditions. In solution, the trinuclear [Mo₃Se₇]⁴⁺ core is probably ligated by Se_x^{2-} ligands. The various $\{[Mo_3Se_7](Se_x)_n\}^{2-}$ complexes present in solution during the reaction provide an efficient mass-transport and dissolution-reprecipitation mechanism, both of which are necessary for crystal growth. Thus the excess Se_x^{2-} ligands act as effective "mineralizers". The role of counterion in phase formation is not clear at the moment, but preliminary observations indicate that it must be significant. For example, new structure types have been isolated when Cs instead of K is used.¹⁷ We presume the fate of the oxide ion to be hydroxide, after reaction with water. Since the selenide ion is softer than oxide, the substitution of the latter, in MoO_3 , by Se_2^{-1} is assisted by the reduction of the Mo^{6+} center to the softer Mo^{4+} center.

We note here that known Mo/Se anions such as $[MoSe_4]^{2-18}$ and $[MoSe_9]^{2-,19}$ typically synthesized at ambient temperature using conventional solution methods, were not observed under our hydrothermal conditions nor did we observe MoSe₂ impurities. We also did not detect formation of reduced Mo/Se Chevrel phases, such as the members of the $A_{n-2}[Mo_{3n}Se_{3n+2}]$ (A = alkali-metal ion) family,²⁰ typically prepared by high temperature ceramic methods.

Structure Description. The Polymeric $[Mo_3Se_{18}]_n^{2n}$. $[Mo_3Se_{18}]_n^{2n}$ is the first known molybdenum polyselenide polymer. The structure of $[Mo_3Se_{18}]_n^{2n}$ is illustrated in Figure 1. It is composed of a zigzag-chain-like structure containing the repeating unit shown in Figure 2. It is also worthwhile to point out that the compound contains four different polyselenides (Se²⁻, Se₂²⁻, Se₃²⁻, and Se₄²⁻) as ligands, even though only Se₄²⁻ was used as starting material. The starting tetraselenide is reduced by Mo metal to form shorter selenides, while Mo metal is oxidized to the formal oxidation state of 4+. The presence of all the different

Figure 2. Labeling scheme of the repeating unit of $[Mo_3Se_{18}]_n^{2n-1}$.

polyselenides also attests to the complexity of polyselenide solutions.^{1e}

The anion framework contains the discrete trinuclear $[Mo_3-(\mu_2-Se_2)_3(\mu_3-Se)]^{4+}$ cluster core as a building block. The clusters are connected in space by one Se₃²⁻ and two Se₄²⁻ ligands. The average Mo-Mo distance in the core is 2.77 (1) Å, and it is comparable to that of the similar building block found in $[Mo_{12}Se_{56}]^{12-12}$ and in the molybdenum polysulfide cluster $[Mo_3S_{13}]^{2-,21}$ The latter contains the $[Mo(\mu_2-S_2)_3(\mu_3-S)]^{4+}$ core, which is also found as a repeating unit in the polymeric structure of $Mo_3S_7X_4$ (X = Cl, Br).²² An interesting feature of this core is that the three Mo atoms and three Se atoms from the μ_2 -Se₂²⁻ ligands lie in the same plane. The remaining three Se atoms from the μ_3 -Se²⁻ ligand. Recently, Soviet workers reported the interesting sulfo/seleno complex $[Mo_2S_4Se_3Cl_6]^{2-}$ containing a similar trinuclear $[Mo(\mu-SSe)_3(\mu_3-S)]^{4+}$ core.²³

The zigzag chain of $[Mo_3(\mu_2-Se_2)_3(\mu_3-Se)(Se_4)_2(Se_3)]_n^{2+}$ can be viewed as parallel $[Mo_3(\mu_2-Se_2)_3(\mu_3-Se)]^{4+}$ cores, facing in the same direction and cross-linked by bridging Se₄²⁻ ligands. The latter bond to the two Mo atoms (Mo2 and Mo3) of the $[Mo_3-(\mu_2-Se_2)_3(\mu_3-Se)]^{4+}$ cores. The zigzag chains are noncentrosym-

Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 934-955.
 O'Neal, S. C.; Kolis, J. W. J. Am. Chem. Soc. 1988, 110, 1971-1973.

⁽¹⁹⁾ O'Neal, S. C.; Kolls, J. W. J. Am. Chem. Soc. 1988, 110, 1971-1975.
(20) (a) Potel, M.; Gougeon, P.; Chevrel, R.; Sergent, M. Rev. Chim. Miner. 1984, 21, 509-536. (b) Chevrel, R.; Sergent, M. In Superconductivity in Ternary Compounds; Fisher, O., Maple, M. P., Eds.; Topics in Current Physics; Springer-Verlag: Berlin, 1982. (c) Gougeon, P.; Potel, M.; Sergent, M. Acta Crystallogr. 1989, C45, 182-185.

^{(21) (}a) Müller, A.; Pohl, S.; Dartmann, M.; Cohen, J. P.; Bennett, J. M.; Kirshner, R. M. Z. Naturforsch. 1979, 34B, 434-436. (b) Müller, A.; Sarkar, S.; Bhattacharyya, R. G.; Pohl, S.; Dartmann, M. Angew. Chem., Int. Ed. Engl. 1978, 17, 535.

Marcoll, J.; Rabenau, A.; Mootz, D.; Wunderlich, H. Rev. Chim. Miner. 1974, 11, 607-615.

 ⁽²³⁾ Fedin, V. P.; Mironov, Yu. V.; Sokolov, M. N.; Kolesov, B. A.; Fedorov, V. Ye.; Yufit, D. S.; Struchkov, Yu. T. *Inorg. Chim. Acta* 1990, *174*, 275-282.

Figure 3. ORTEP representation of the interaction between the Se_3^{2-} ligand and the $[Mo_3(\mu_3-Se)(\mu_2-Se_2)_3]^{4+}$ core in $[Mo_3Se_{18}]_n^{2n-}$.

Table IV. Selected Distances (Å) in the $[Mo_3Se_{18}]n^{2n-}$ Chain

Mo1-Mo2	2.759 (2)	Mo3-Se5 2.544 (3)	
Mo1-Mo3	2.779 (2)	Mo3-Se6 2.660 (3)	
Mo2-Mo3	2.781 (2)	Mo3-Se7 2.615 (3)	
Mo2-Mo3 Mo1-Se1 Mo1-Se2 Mo1-Se3 Mo1-Se5 Mo1-Se6 Mo1-Se9 Mo1-Se10 Mo2-Se1 Mo2-Se7 Mo2-Se8 Mo2-Se10 Mo2-Se14	2.781 (2) 2.473 (3) 2.660 (3) 2.613 (3) 2.522 (3) 2.612 (3) 2.519 (3) 2.604 (2) 2.513 (3) 2.621 (3) 2.539 (3) 2.572 (3) 2.613 (2) 2.625 (3)	$\begin{array}{cccc} Mo3-Se7 & 2.615 & (3) \\ Mo3-Se8 & 2.551 & (3) \\ Mo3-Se11 & 2.617 & (3) \\ Mo3-Se15 & 2.651 & (2) \\ Se3-Se4 & 2.327 & (3) \\ Se4-Se8 & 3.097 & (3) \\ Se5-Se6 & 2.330 & (3) \\ Se4-Se9 & 2.996 & (3) \\ Se9-Se10 & 2.350 & (3) \\ Se7-Se8 & 2.340 & (3) \\ Se13-Se14 & 2.382 & (3) \\ Se15-Se16 & 2.376 & (3) \\ Se17-Se18 & 2.354 & (3) \\ \end{array}$	
Mo2-Se18	2.650 (3)	Sel1-Sel2 2.370 (3)	
Mo3-Sel	2.503 (3)	Se16-Se17 2.342 (3)	
1105 601	2.505 (5)	Se12–Se13 2.356 (3)	

^aStandard deviations are given in parentheses.

metric. All the triply bridging Se atoms in the $[Mo_3(\mu_2-Se_2)_3 (\mu_3-Se)$ ⁴⁺ units within a single zigzag chain are pointed to the (010) direction. The third Mo atom, Mo3, is bonded to a terminal Se_3^{2-} ligand in an unusual fashion. In this triselenide ligand, two adjacent Se atoms, Se2 and Se3, are bonded to Mo3, while the third terminal Se4 atom is left alone. This is shown in Figure 3. What is unprecedented is that Se4 stretches out to the center of a triangle of three Se atoms of the three bridging diselenides of another $[Mo_3(\mu_2-Se_2)_3(\mu_3-Se)]^{4+}$ cluster in a neighboring chain. This generates an unusual polyselenide fragment similar, but not identical, to the [Se₇]⁸⁻ "umbrella" found in [Mo₁₂Se₅₆]¹²⁻. This fragment is shown in Figure 3 and in structure 1. The bond

distances in the triselenide unit are 2.336 (3) and 2.327 (3) Å,

12- 01-1-0

able v.	Selected	Angles (deg) in	the [M03Se18]-	Chain
Mo2-	Mol-Mo3	60.27 (6)	Se2-Mo1-Se3	52.58 (7)
Se1-N	101-Se2	145.7 (1)	Se2-Mo1-Se5	93.57 (8)
Se1-N	101-Se3	93.11 (9)	Se2-Mo1-Se6	95.28 (9)
Se1-N	101-Se5	112.93 (9)	Se2-Mo1-Se9	89.03 (8)
Se1-N	101-Se6	84.23 (8)	Se2-Mo1-Se1	0 91.28 (8)
Se1-N	101-Se9	114.45 (9)	Se3-Mo1-Se5	130.6 (1)
Se1-M	101-Se10	83.70 (8)	Se3-Mo1-Se6	90.48 (8)
Se8-N	102-Se9	83.75 (8)	Se3-Mo1-Se9	124.21 (9)
Se8-N	102-Se10	137.4 (1)	Se3-Mo1-Se1	0 84.13 (8)
Se8-N	102-Se14	86.41 (8)	Se5-Mo1-Se6	53.94 (8)
Se8-N	102-Se18	137.51 (9)	Se5-Mo1-Se9	83.30 (8)
Se9-N	102-Se10	53.89 (8)	Se5-Mo1-Se1	0 137.50 (9)
Se9-N	102-Se14	85.35 (8)	Se6-Mo1-Se9	137.17 (9)
Se9-N	102-Se18	128.29 (9)	Se6-Mo1-Se1	0 166.5 (1)
Se10-	Mo2-Sel4	93.70 (8)	Se9-Mo1-Se1	0 54.57 (8)
Se10-	Mo2-Sel8	81.40 (8)	Se7-Mo2-Se8	53.90 (7)
Sel4-	Mo2-Sel8	71.72 (8)	Se7-Mo2-Se9	137.28 (9)
Sel-N	102-Se7	83.99 (8)	Se7-Mo2-Se1	0 165.8 (1)
Sel-N	102-Se8	112.72 (9)	Se7-Mo2-Se1	4 96.14 (9)
Sel-N	102-Se9	111.28 (9)	Se7-Mo2-Se1	8 91.86 (8)
Sel-N	102-Se10	82.74 (8)	Sel-Mo2-Sel	8 83.55 (8)
Sel-N	102-Se14	155.3 (1)		
Se1-M	103-Se5	111.18 (9)	Se6-Mo3-Se7	166.43 (9)
Se1-N	103-Se6	82.66 (8)	Se6-Me3-Se8	135.89 (9)
Se1-N	103-Se7	84.30 (8)	Se6-Mo3-Se1	1 85.55 (8)
Se1-M	103-Se8	112.64 (9)	Se6-Mo3-Se1	5 96.38 (8)
Se1-M	103-Se11	72.64 (8)	Se7-Mo3-Se8	53.85 (7)
Se1-N	103-Se15	152.6 (1)	Se7-Mo3-Se1	1 87.00 (8)
Se5-N	103-Se6	53.14 (8)	Se7-Mo3-Se1	5 93.47 (8)
Se5-N	103-Se7	136.58 (9)	Se8-Mo3-Se1	1 138.0 (1)
Se5-N	103-Se8	83.09 (8)	Se8-Mo3-Se1	5 87.12 (8)
Se5-N	103-Se11	135.90 (9)	Sel1-Mo3-Se	15 79.99 (8)
Se5-N	103-Se15	89.12 (8)		
Mo1-9	Sel-Mo2	67 20 (7)	Mo2-Se9-Se4	104.91 (8)
Mo1-9	Sel-Mo3	67.90 (7)	Mo2-Se8-Se7	64.82 (8)
Mol-9	Se5-Mo3	66 53 (7)	Mo2-Se9-Se1	0 63.95 (8)
Mol-9	Se6-Mo3	63 63 (7)	Mo1-Se6-Se5	61.08 (8)
Mol-	Seq-Mo2	65 65 (7)	Mo2-Se7-Se8	61.28 (8)
Mol-	Sel0-Mo2	63.87 (6)	Mo2-Se14-Se	13 109.9 (1)
Mo2-9	Sel-Mo3	67 33 (7)	Mo3-Se6-Se5	60.89 (8)
Mo2-9	Se7-Mo3	64.16 (7)	Mo3-Se7-Se8	61.69 (8)
Mo2-9	Se8-Mo3	66 22 (7)	Mo3-Se15-Se	16 99.6 (1)
Mol-	Se3-Se2	64.74 (9)	Mo2-Se18-Se	17 112.0 (1)
Mol-	Se3-Se4	115.7 (1)	Mo1-Se5-Se6	64.99 (8)
Mol-	Se2-Se3	62.67 (8)	Mo3-Se5-Se6	65.98 (8)
Mo3-	Se8-Se7	64.47 (8)	Mo1-Se10-Se	9 60.87 (8)
Mo1-	Se9-Se4	112.05 (9)	Mo2-Se10-Se	9 62.16 (8)
Mol-	Se9-Se10	64.55 (8)	Mo3-Sell-Se	12 115.4 (1)
0.0.0	-1 0 4	105 2 (1)	0.16 0.14 0	17 107 4 (1)
Se2-S	es-Se4	105.3 (1)	Selb-Sel6-Se	17 105.4 (1)
Sej-S	64-569 Sala Sala	121.8 (1)	Selo-Sel /-Se	
Sell	Sel2-Sel3	0 108.9(1)	364-369-8610	108.9(1)
Se12-	Sel3-Sel4	F 10211 (1)		

"Standard deviations are given in parentheses.

respectively, which are in the range of other normal Se-Se distances.^{1,2} The average distance between Se_{ap} and Se_{a} is 3.15 (16) Å (see 1). The distance between two parallel $[Mo_3(\mu_2 - Se_2)_3 - K_2]$ $(\mu_3$ -Se)]⁴⁺ triangles in each individual chain is 12.66 Å, which allows for the insertion of another such triangle from the neighboring chain. This brings the zigzag chains together side by side in a staggered arrangement to make two-dimensional sheets. The single chains interlock in a "zipper fashion". The average distance between these sheets is 9.17 Å, with the potassium atoms located between. Selected distances and angles in the Mo/Se framework are shown in Tables IV and V. There are two crystallographically different potassium atoms with coordination numbers of 9 and 10, respectively, shown in Figure 4. The average K-Se distance is 3.6 (2) Å. Selected K-Se distances are given in Table VIII.

The average Se-Se distances in the tetraselenide ligands are normal at 2.36 (2) Å. The three bridging diselenides in the $[Mo_3(\mu_2-Se_2)_3(\mu_3-Se)]^{4+}$ core have the average bond distance of 2.34 (1) Å, which is 0.11 Å shorter than what is observed in the same $[Mo_3(\mu_2-Se_2)_3(\mu_3-Se)]^{4+}$ cores of $K_{12}Mo_{12}Se_{56}$. Structure 2 shows the $[Se_7]^{8-}$ "umbrella" fragment found in $[Mo_{12}Se_{56}]^{12-}$.

Figure 4. ORTEP representation of the environments of K1 and K2 in $[K_2Mo_3Se_{18}]_n$.

The average Se_{ap} - Se_b distance in $[Mo_{12}Se_{56}]^{12-}$ is 2.76 (15) Å. The interaction of Se_{ap} (formally a Se^{2-} unit) with the bridging diselenides could be the result of partial electron transfer from the Seap to the Sea-Seb unit. This is suggested by the significant lengthening of the average Se_a - Se_b distance (2.45 (7) Å) in $[Mo_{12}Se_{56}]^{12-}$, as noted previously.¹² Structure 1 shows the formation of a similar "umbrella" polyselenide fragment found in I. However, in this case, the apical Seap atom is actually a terminal Se atom of a triselenide ligand bound to a $[Mo_3(\mu_2-Se_2)_3(\mu_3-Se)]^{4+}$ cluster. The Se_{ap}-Se_a distances in I are longer (average 3.15 (16) Å) than those found in [Mo12Ses6]¹²⁻ but significantly shorter than 4.0 Å, the sum of van der Waals radii of two Se atoms.²⁴ If indeed electron transfer were responsible for such short contacts in I, it is not extensive enough to lengthen the Se_a-Se_b diselenide bonds in I. This could arise from the higher formal oxidation state of Se_{an} (1-) in I compared to that (2-) in $[Mo_{12}Se_{56}]^{12-}$. Theoretical calculations are in progress to probe the influence of the apical selenium on the corresponding diselenides in the $[Mo_3(Se_2)_3Se]^{4+}$ core

The [Mo₉Se₄₀]⁸⁻ Cluster of Clusters. The [Mo₉Se₄₀]⁸⁻ anion has a very unusual and asymmetric structure, which is shown in Figure 5. It has several unexpected features. It is composed of three different trinuclear molybdenum polyselenide subclusters, A-C, in which the trinuclear $[Mo_3(\mu_2 \cdot Se_2)_3(\mu_3 \cdot Se)]^{4+}$ core is readily recognizable. The $[Mo_3Se_{40}]^{8-}$ anion can be viewed as an aggregate of three $[Mo_3Se_{13}]^{2-}$ trinuclear clusters and one Se^{2-} . The average Mo-Mo distance in A-C is 2.77 (1) Å, similar to that in $[Mo_3Se_{18}]_n^{2r-}$, $[Mo_{12}Se_{56}]^{12-,12}$ and $[Mo_3Se_{13}]^{2-,21}$ The triply bridging Sel4 atom is part of subcluster B by covalently binding its three Mo atoms and at the same time forming unusual Se-Se contacts with the three Se atoms of the bridging Se²⁻ units of subcluster A. The average bond distance is 3.13 (6) Å, which is significantly smaller than the van der Waals distance between two Se atoms. This Se-Se interaction is probably not bonding and does not cause significant bond lengthening of the bridging diselenides in cluster A. We note that the approach of two $[Mo_3(\mu_2 - Se_2)_3(\mu_3 - Se)]^{4+}$ cores in this fashion is also unprecedented. The average Se-Se distance in the bridging Se_2^{2-} ligands in subcluster A is 2.31 (2) Å. Selected distances and angles in the

(24) Weast, R. C. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 1985-1988; Vol. 66, p D-188.

Table VI. Selected Distances (Å) in the [Mo₉Se₄₀]⁸⁻ Anion^a

TADIC VI, C	Sciceted Di	stances (rr) h	in the [mog	50401 1	tinon	
		Mo-Mo I	Distances			
Mol-Mo2	2.760 (6)	Mo4-Mo5	2.791 (5)	Mo7-l	Mo8	2.773 (6)
Mo1-Mo3	2.759 (5)	Mo4-Mo6	2.778 (5)	Mo7-1	VoD	2.775 (5)
Mo2-Mo3	2.749 (6)	Mo5-Mo6	2.772 (6)	Mo8-l	Mo9	2.750 (6)
		Mo-Mo	2.77 (1)			
		(mean)	2.77 (1)			
		(mean)				
		Mo-Se D	istances			
Mo1-Se1	2.489 (7)	Mo6-Se24	2.620 (6)	Mo7-8	Se27	2.499 (6)
Mo1–Se8	2.574 (6)	Mo4-Se15	2.624 (6)	Mo7-8	Se28	2.562 (8)
Mo1-Se2	2.617 (6)	Mo6-Se25	2.543 (8)	Mo7-8	Se29	2.646 (6)
Mo1-Se3	2.568 (8)	Mo4-Se14	2.467 (6)	Mo7-8	Se34	2.543 (7)
Mo3-Se12	2.618 (6)	Mo6-Se26	2.606 (6)	Mo7-5	Se35	2.625 (6)
Mo1-Se9	2.599 (8)	Mo4-Se16	2.609 (7)	Mo7-8	Se38	2.559 (7)
Mo1-Se12	2.615 (7)	Mo4-Se21	2.558 (6)	Mo7-5	Se39	2.604 (6)
Mol-Sel3	2.542 (9)	Mo4-Se25	2.567 (8)	Mo8-5	Se27	2.503 (7)
Mo2-Se1	2.517 (7)	Mo4-Se26	2.563 (6)	Mo8-5	Se30	2.594 (7)
Mo2-Se4	2.560 (8)	Mo5-Se14	2.481 (6)	Mo8-5	Se31	2.616 (7)
Mo2-Se5	2.584 (6)	Mo5-Se17	2.589 (6)	Mo8-5	Se34	2.536 (7)
Mo2-Se8	2.544 (5)	Mo6-Se19	2.571 (7)	Mo8-5	Se35	2.606 (6)
Mo4-Se22	2.608 (6)	Mo6-Se20	2.617 (7)	Mo8-5	Se36	2.596 (5)
Mo3-Sell	2.617 (6)	Mo5-Se18	2.641 (6)	Mo8-5	Se37	2.517 (7)
Mo2-Se9	2.616 (6)	Mo5-Se21	2.563 (6)	Mo9-5	Se27	2.514 (7)
Mo2-Se10	2.565 (7)	Mo5-Se22	2.611 (6)	Mo9-5	Se32	2.567 (6)
Mo2-Sel1	2.615 (5)	Mo5-Se23	2.552 (8)	Mo9-5	Se33	2.624 (7)
Mo3-Sel	2.491 (9)	Mo5-Se24	2.584 (6)	Mo9-5	Se36	2.599 (7)
Mo3-Se6	2.609 (8)	Mo6-Sel4	2.513 (8)	Mo9-5	Se37	2.520 (8)
Mo3-Se7	2.572 (5)	Mo6-Se23	2.553 (8)	Mo9-8	Se38	2.531 (8)
Mo3-Se10	2.567 (6)			Mo9-5	Se39	2.615 (7)
Mo3-Sel3	2.543(7)					
	2.0.0 (.)					
		Se-Se D	istances			
Se2-Se3	2.32 (1)	Se25-Se26	2.44 (1)	Se21-9	Se40	2.866 (9)
Se4-Se5	2.350 (9)	Se28-Se28	2.98 (1)	Se23-5	Se40	2.969 (7)
Se6-Se7	2.35 (1)	Se28-Se29	2.342 (8)	Se25-5	Se40	2.80 (1)
Se8-Se9	2.297 (8)	Se30-Se31	2.360 (9)	Se34-9	Se40	2.984 (8)
Se10-Se11	2.329 (7)	Se32-Se33	2.35 (1)	Se37-8	Se40	3.182 (9)
Se12-Se13	2.307 (8)	Se34-Se35	2.340 (8)	Se38-3	Se40	2.87 (1)
Sel5-Sel6	2.344 (9)	Se36-Se37	2.349 (9)			
Se17-Se18	2.380 (8)	Se38-Se39	2.37 (1)			
Se19-Se20	2.31 (1)					
Se21-Se22	2.362 (8)					
Se23-Se24	2.373 (8)					
4 Standon	d douiotic		in maneral	haras	The	actimated

^aStandard deviations are given in parentheses. The estimated standard deviation in the mean Mo-Mo bond length was calculated from the equation $\sigma_l = [\sum_n (l_n - l)^2/n(n-1)]^{1/2}$, where l_n is the length of the *n*th bond, *l* the mean length, and *n* the number of bonds.

Mo/Se framework are shown in Tables VI and VII. The coordination around the K^+ ions is not well defined in terms of regular coordination polyhedra, but it ranges from 8 to 11. The distances around the K^+ ions are given in Table VIII.

Another unprecedented interaction is that between subcluster B and subcluster C. These subclusters are connected by a Se²⁻ ion which is weakly interacting with six Se atoms of the six Mo-bridging Se_2^{2-} units of the two subclusters. This forms an intriguing $[Se_{13}]^{x-}$ "double-umbrella" fragment, shown in structure 3, with long Se_{ap} -Se_a distances, as shown in Figure 5. The distance

between this Se_{ap} atom and the six Se atoms ranges from 2.80

Table VII. Selected Bond Angles (deg) for [Mo₉Se₄₀]^{8-a}

			Subcl	uster A			
Se2-Mo1-Se3	53.0 (2)	Se1-Mo2-Se4	92.4 (3)	Mo1-Se1-Mo2	66.9 (2)	Mo1-Se9-Mo2	63.9 (2)
Se2-Mo1-Se8	92.6 (2)	Se1-Mo2-Se9	85.1 (2)	Mo1-Se1-Mo3	67.3 (2)	Mo1-Se9-Se8	63.2 (2)
Se2-Mo1-Se9	92.9 (2)	Se1-Mo2-Se10	113.0 (2)	Mo2-Se1-Mo3	66.6 (2)	Mo2-Se9-Se8	62.0 (2)
Se2-Mo1-Se12	93.9 (2)	Se1-Mo2-Se11	83.5 (2)	Mo1-Se2-Se3	62.4 (2)	Mo2-Se10-Mo3	64.8 (2)
Se2-Mo1-Se13	92.1 (2)	Se4-Mo2-Se5	54.4 (2)	Mo1-Se3-Se2	64.7 (2)	Mo2-Se10-Se11	64.4 (2)
Se3-Mo1-Se9	86.9 (3)	Se4-Mo2-Sel1	86.6 (2)	Mo2-Se4-Se5	63.3 (2)	Mo2-Sel1-Mo3	63.4 (2)
Se3-Mol-Sel2	89.8 (3)	Se5-Mo2-Se9	94.0 (2)	Me2-Se5-Se4	62 3 (2)	Mo2-Sel1-Sel0	62 2 (2)
Seg-Mol-Seg	52 7 (2)	Se5-Mo2-Se10	90.5 (2)	Mo2-Se6-Se7	62.2(2)	Mo3-Sel 1-Sel0	62.2 (2)
See-Mol-Sel2	82 2 (2)	Se5_Mo2_Se11	03 2 (2)	Mo3-Se7-Se6	63 9 (2)	Mol-Sel2-Mol	63 6 (2)
Sec Mol-Sel3	149 A (2)	Seg-Mo2-Seg	53.5 (2)	Mal-See-Mal	65 C (2)	Mo1-Sel 2-Sel 2	61.0(2)
Seg-101-Sel2	100.4 (J) 52.1 (D)	See-14102-See	32.0(2)	Mol Se8 Se0	(3.2(2))	Mol-Sel2-Sel3	(1.9(2))
Sel2-Mol-Sel3	53.1(2)	Seo-M02-Selu	63.3 (2) 167.0 (2)	M01-Sea-Sey	04.2 (2)	M03-Sel2-Sel3	(1.8(2))
Sel-Mol-Ses	92.5 (3)	Sey-M02-Sell	107.9 (3)	M02-Se8-Se9	03.2 (2)	M01-Sel 3-M03	05.7 (2)
Sel-Mol-Se9	86.0 (2)	Selo-Mo2-Sell	53.4 (2)			Mol-Sel3-Sel2	65.1 (3)
Sel-Mol-Sel2	83.1 (2)			Mo2-Mo1-Mo3	59.8 (1)	Sell-Sel0-Sel4	167.6 (4)
Se6-Mo3-Se10	90.1 (2)	Se7-Mo3-Se11	86.9 (2)	Mo1-Mo2-Mo3	60.1 (1)	Se8-Se9-Se14	167.5 (3)
Se6-Mo3-Sell	94.2 (2)	Sel-Mo3-Sel1	84.0 (2)	Mo1-Mo3-Mo2	60.1 (1)	Sel2-Sel3-Sel4	166.3 (4)
Sel 2-Mo3-Sel 3	53 1 (2)	Sel-Mo3-Sel2	830(3)				
Set_Mo2_Sel1	037(2)	Se6-Mo3-Se7	53 9 (2)				
Sec-M03-Se12	90.7(2)	Sel0-Me2-Sel2	85 3 (2)				
Sec-1005-Sel 5	50.4 (3)	Selo-M03-Sel3	03.3(2)				
Sel-M03-Se/	93.3 (3)	Se/-M03-Se12	00.3 (Z)				
Sel0-M03-Sel1	53.4 (2)						
			Subcl	uster B			
Se14-Mo4-Se16	91 1 (2)	Sel4-Mo6-Se24	834(2)	Mo3-Se13-Se12	65.1 (2)	Mo4-Se22-Se21	617(2)
Sel4-Mo4-Se22	831(2)	Sel7-Mo5-Se24	88 3 (2)	Mo4-Sel4-Mo5	687(2)	Mo5-Se22-Se21	618(2)
Sel4-M04-Se22	82.4(2)	Sel 9-Mo5-Se21	00.3(2)	Mod-Sel4-Mos	679(2)	Mos-Se22 B021	658(2)
Sel4-M04-Se20	53.7(2)	S-10 Mos S-22	95.7(2)	Mos Sel4 Mos	67.4 (2)	Mos Sola Sola	63.0 (2)
Sel 5-1004-Sel 0	33.2(2)	S-10-Mos S-22	93.4(2)	Mad Salt Salt	(7.4(2))	Mad S-26 Mad	(5.2(2))
Sel 5-M04-Se21	90.0 (2)	Selo-M05-Se25	93.2 (2)	M04-Sel5-Sel6	(3.1(2))	M04-Se25-M00	(1)
Sel 5-M04-Se22	97.2 (2)	Se21-M05-Se22	54.3 (2) 91.9 (2)	M04-Selo-Sel5	03.7(2)	M04-Se25-Se20	01.0 (2)
Sel5-M04-Se25	92.4 (2)	Se21-M05-Se23	81.2 (2)	Moo-Sel/-Sel8	04.1 (2)	M00-Se25-Se20	03.1 (2)
Se15-M04-Se26	90.9 (2)	Se22-M05-Se24	166.7 (2)	Moo-Sel8-Sel7	61.8 (2)	M04-Se20-M06	65.0 (2)
Sel6-Mo4-Se22	87.1 (2)	Se23-M05-Se24	55.0 (2)	M06-Se19-Se20	64.6 (3)	M04-Se26-Se25	61.7 (2)
Se16-Mo4-Se25	132.1 (2)	Se14-Mo5-Se17	89.6 (2)	Mo6-Se20-Se19	62.5 (3)	Mo6-Se26-Se25	60.5 (2)
Se16-Mo4-Se26	88.3 (2)	Se14-Mo5-Se22	82.8 (2)	Mo4-Se21-Mo5	66.1 (2)	Mo6-Se23-Se24	64.1 (2)
Se21-Mo4-Se22	54.5 (2)	Se14-Mo5-Se24	84.8 (2)	Mo4-Se21-Se22	64.0 (2)	Mo5-Se24-Mo6	64.4 (2)
Se21-Mo4-Se25	80.3 (2)	Se17-Mo5-Se18	54.2 (2)	Mo5-Se21-Se22	63.9 (2)	Mo5-Se24-Se23	61.9 (2)
Se22-Mo4-Se26	165.6 (3)	Se17-Mo5-Se22	86.9 (2)	Mo4-Se22-Mo5	64.6 (2)	Mo6-Se24-Se23	61.3 (2)
Se25-Mo4-Se26	56.8 (2)	Se14-Mo6-Se26	81.7 (2)	S-22-S-21-S-40	165 5 (2)	Mas-Mad-Mas	50 7 (1)
Se23-Mo6-Se24	54.6 (2)	Se19-Mo6-Se20	52.9 (3)	Se22-Se21-Se40	165.5(3)	Mod-Mos-Mos	50.0 (1)
Se23-Mo6-Se25	81.0 (2)	Se19-Mo6-Se24	88.6 (2)	5-24 5-22 5-40	163.5 (3)	Mod Mod Mos	39.9 (1)
Se23-Mo6-Se24	54.6 (2)	Se19-Mo6-Se26	87.6 (2)	5624-5625-5640	102.9 (3)	M04-M00-M05	60.4 (1)
Se23-Mo6-Se25	81.0 (2)	Se20-Mo6-Se23	93.2 (̀3)				
Se24-Mo6-Se26	164.3 (3)	Se20-Mo6-Se24	95.1 (2)				
Se25-Mo6-Se26	56.5 (2)	Se20-Mo6-Se25	92.4 (3)				
Sel4-Mo6-Sel9	93 3 (3)	Se20-Mo6-Se26	94.8 (2)				
Bert Millo Berty	<i>J</i> J J J J J J J J J J J J J J J J J J	5020 1100 5020	74.0 (2)				
			Subcl	uster C			
Se27-Mo7-Se28	93.6 (2)	Se30-Mo8-Se31	53.9 (2)	Mo8-Se34-Se35	64.4 (2)	Mo7-Se27-Mo8	67.3 (2)
Se27-Mo7-Se35	83.1 (2)	Se30-Mo8-Se35	85.8 (2)	Mo7-Se35-Mo8	64.0 (2)	Mo7-Se27-Mo9	67.2 (2)
Se27-Mo7-Se39	84.0 (2)	Se30-Mo8-Se36	88.5 (2)	Mo7-Se35-Se34	61.3 (2)	Mo8-Se27-Mo9	66.5 (2)
Se31-Mo8-Se34	94.0 (2)	Se31-Mo8-Se36	92.0 (2)	M08-Se35-Se34	61.4 (2)	Mo7-Se28-Se29	65.1 (2)
Se28-Mo7-Se35	88.5 (2)	Se31-Mo8-Se37	91.2 (3)	Mo8-Se36-Mo9	63.9 (2)	Mo7-Se29-Se28	61.5 (2)
Se29-Mo7-Se39	95.1 (2)	Se34-Mo8-Se35	54.1 (2)	Mo8-Se36-Se37	60.9 (2)	Mo8-Se30-Se31	63.5 (2)
Se28-Mo7-Se29	534(2)	Se34-Mo8-Se37	836(2)	Mo9-Se36-Se37	61 0 (2)	Mo8-Se31-Se30	62 6 (2)
Se28_Mo7_Se30	88 5 (2)	Se35-Mo8-Se36	165 3 (3)	Mo8-Se37-Mo9	66 3 (2)	Mo0_Se32_Se33	64.4(2)
Sezo-M07-Sezo	00.5(2)	Se35-Mo8-Se30	547(3)	Mo9-Se27-Se26	60.5(2)	Mo0_Se22_Se22	61 Q (2)
Se29-M07-Se35	53.7 (2)	S-37 Mag S-30	34.7(2)	Mag Sa27 Sa26	(4.4(2))	Mo7 So24 Mo8	(1.7(2))
SC34-M0/-SC35	33.8 (2)	Sez/-1000-Se30	91.3(2)	M09-565/-5650	64.4(2)	M07-5034-M08	00.2(2)
Se34-M0/-Se38	81.7 (2)	Se2/-M08-Se35	83.4 (2)	M0/-Se38-M09	66.1 (2)	M0/-Se34-Se35	64.9 (2)
Sess-M0/-Sess	100.4 (3)	Se2/-M08-Se36	83.2 (2)	M0/-Se38-Se39	03.0 (2)	0-01 0.40 0.00	(0 ((*)
Se38-M07-Se39	54.7 (2)	Se2/-M08-Se37	113.2 (2)	M0y-Se38-Se39	04.4 (2)	Se21-Se40-Se23	09.6 (2)
Se27-Mo9-Se32	94,4 (2)	Se37-Mo9-Se38	82.5 (3)	M07-Se39-M09	64.2 (2)	Se21-Se40-Se25	71.4 (2)
Se33-Mo9-Se36	93.1 (3)	Se32-Mo9-Se39	85.4 (2)	M07-Se39-Se38	61.7 (2)	Se23-Se40-Se25	70.0 (2)
Se27-Mo9-Se36	82.9 (2)	Se33-Mo9-Se37	89.8 (3)	Mo9-Se39-Se38	60.8 (2)	Se23-Se40-Se38	89.2 (2)
Se27-Mo9-Se27	1127(2)	Se33-Mo9-Se38	916(3)	Se34-Se40-Se38	69.5 (2)	Se25-Se40-Se34	106.4 (3)
Se27-Mc0-Se29	112.7(2)	Se33-Ma0-Se30	957(3)	Mag-Ma7-Mag	50 A (1)	Se35-Se34-Se40	167 1 (2)
Se27_MAQ_Se20	825(2)	Se36_MAQ_C=27	54 K (3)	Mo7-Mo2-Mo0	60 2 (1)	Se30_Se22_Se40	160 0 (2)
Sel1-MOD-Sell	527(2)	Selo-M09-Selo/	165 3 (2)	Mo7-Mo0-Mo9	60.2 (1)	3637-3636-3640	102.0 (3)
Se32-Mag-Se33	00 1 (1)	Se30-1107-3039	54 0 (2)	1410/-14109-14108	00.2 (1)		
PC27-1AIO2_9C30	70.4 (4)	2020-IAIO2-3023A	シマ・フ しんし				

^aNumbers in parentheses are the estimated standard deviations in the least significant digits.

(2) to 3.182 (9) Å. An inverse correlation exists between the Se_{ap} -Se_a distance and the corresponding Se_{a} -Se_b distance. For example, the shortest Se_{ap} -Se_a distance, 2.80 (2) Å, results in the maximum lengthening of the corresponding diselenide to 2.44 (1) Å, which is 0.10 Å longer than the average bridging Se-Se distance in I and close to 2.45 (1) Å, the corresponding distance in

 $[Mo_{12}Se_{56}]^{12-.12}$ Assuming that subclusters A and B in II are not bonded, the compound can be represented as $K_8[Mo_3Se_{13}]$. $[Mo_6Se_{27}]$ ·4H₂O.

These results make it apparent that the pocket created by the three bridging Se_2^{2-} ligands of a trinuclear $[Mo_3Se_7]^{4+}$ core is special and that it has affinity for additional electron density, as

Figure 5. Top: ORTEP representation and labeling scheme of the $[Mo_9Se_{40}]^{8-}$ anion. Bottom: Stereoview of the $[Mo_9Se_{40}]^{8-}$ anion. Black circles represent Mo atoms.

if it was positively charged. The stabilization of such unusual polyselenide $[Se_x]^{n-}$ fragments with unconventional Se-Se distances appears to be a recurring theme in hydrothermal Mo/Se_x chemistry. It suggests that the lowest unoccupied molecular orbital on the $[Mo_3Se_7]^{4+}$ core is centered on the bridging diselenide ligands.

The reason for these long Se...Se interactions under such synthetic conditions is not clear at the moment, but it may be associated with the combination of higher temperature and pressure conditions and even the counterion used. We are currently investigating the counterion effect on these anions by looking at other cations besides K⁺ to determine their role in directing the structure of the Mo/Se anion and any $[Se_x]^{n-}$ fragments.

Finally, there is an unusually short intercluster Se28...Se28 distance of 2.98 (1) Å between two different $[Mo_9Se_{40}]^{8-}$ clusters involving a terminal diselenide ligand in subcluster C. The two $[Mo_9Se_{40}]^{8-}$ clusters involved in this close Se...Se contact are related by a crystallographic center of symmetry, as shown in Figure 6. A similar distance was also observed in the electron-poor $[W(CO)_9Se_2]_2^{2+}$ dimer (Se-Se = 3.015 Å)²⁵ and Se_4S_2N_2²⁺ cation

Table VIII. K-Se Distances (Å) in K₈[Mo₉Se₄₀]-4H₂O^a

I adie VIII.	K-Se Dist	ances (A) in	K8[M0936	40]·4H20-	
Sel-K3	3.59 (2)	Se17-K4	3.29 (1)	Se26-K7	3.76 (3)
Se2-K1	3.32 (1)	Se17-K5	3.39 (2)	Se26-K8	3.79 (3)
Se2-K2	3.23 (1)	Se17-K6'	3.27 (2)	Se26-K8'	3.33 (3)
Se3-K1	3.48 (2)	Se17-K7'	3.65 (2)	Se26-K8'	3.56 (3)
Se4–K2	3.30 (1)	Se18-K6	3.46 (2)	Se27-K2	3.37 (1)
Se4-K5'	3.51 (2)	Se18-K6'	3.10 (3)	Se28-K2	3.55 (1)
Se5-K2	3.44 (1)	Se18-K7'	3.73 (3)	Se28-K5'	3.46 (2)
Se5-K4	3.70 (2)	Se18-K7'	3.21 (2)	Se29-K2	3.25 (1)
Se5-K5	3.85 (2)	Se19K7	3.41 (3)	Se29-K4	3.48 (1)
Se5-K5'	3.60 (2)	Se19-K8'	3.54 (3)	Se29-K5	3.27 (2)
Se7-K1	3.32 (1)	Se20-K8	3.68 (3)	Se29-K6'	3.71 (2)
Se7-K3	3.30 (2)	Se20-K8'	3.88 (3)	Se30-K1	3.30 (1)
Se8-K2	3.98 (1)	Se21-K6	3.87 (2)	Se30-K3	3.45 (1)
Sell-K2	3.82 (1)	Se21-K7'	3.79 (2)	Se31-K1	3.68 (1)
Se12-K1	3.49 (1)	Se21-K7'	3.86 (2)	Se31-K3	3.27 (1)
Sel2-K3	3.72 (1)	Se22-K4	3.55 (1)	Se31-K8	3.65 (3)
Se15-K7	3.33 (3)	Se22-K6'	3.60 (2)	Se32-K3	3.20(1)
Se15-K7	3.64 (2)	Se24-K6	3.75 (2)	Se32-K5	3.75 (2)
Se16-K2	3.68 (1)	Se24-K7	3.72 (2)	Se32-K5'	3.36 (3)
Sel6-K4	3.67 (1)	Se24-K7	3.81 (2)	Se33-K3	3.56 (2)
Se33-K5	3.62 (3)	Se35-K5'	3.42 (2)	Se38-K7	3.84 (3)
Se34-K6	3.69 (3)	Se35-K6	3.83 (3)	Se39-K4	3.83 (1)
Se34-K6	3.35 (2)	Se36-KI	3.71 (1)	Se40-K7	3.81 (2)
Se36-K3	3.82 (1)	Se39-K5	3.59 (2)	Se38-K4	3.26 (1)
		Se40-K6	3.38 (2)	Se35-K5	3.74 (2)
Se1-1	K 1 3	.747 (7)	Sell-K	2 3.92	1 (7)
Se2-]	K 1 3	.389 (6)	Se12-K	2 3.42	0 (7)
Se4 –]	K 1 3	.532 (7)	Se12-K	2 3.66	8 (7)
Se6-1	K1 3	.884 (6)	Se2-K2	3.30	0 (6)
Se10-	-K1 3	.728 (6)	Se14-K	2 3.37	9 (7)
Se14-	-K1 3	.341 (6)	Se3-K2	3.74	0 (6)
Se15-	-K1 3	.365 (6)	Sel5-K	2 3.24	1 (7)
Se16-	-K1 3	.775 (6)	Se17-K	2 3.44	4 (7)
Se18-	-K1 3	.763 (7)			

^aStandard deviations are given in parentheses.

Figure 6. ORTEP representation of the centrosymmetric relationship between two clusters of $[Mo_9Se_{40}]^{8-}$. The short contact between two terminal diselenides is shown by the arrow. Black circles represent Mo atoms.

(Se-Se = 3.135 Å),²⁶ in which it was characterized as a weak Se...Se bonding interaction. These short Se...Se contacts are electronic in origin. The same cannot be said for the one encountered in II. If electron deficiency in the Mo(Se₂) fragment was causing this unusual Se...Se contact, shorter than average Mo-Se and Se-Se bonds would be expected. However, the normal Mo-Se and Se-Se distances, around the Mo-(Se₂) fragment, do not hint at any lack of electron density in this part of the molecule.

⁽²⁵⁾ Collins, M. J.; Gillespie, R. J.; Kolis, J. W.; Sawyer, J. F. Inorg. Chem. 1986, 25, 2057-2061.

⁽²⁶⁾ Gillespie, R. J.; Kent, J. P.; Sawyer, J. F. Inorg. Chem. 1981, 20, 4053-4060.

Thus, the close Se-Se distance may be the result of crystal packing forces

Concluding Remarks

Thus far, all Mo/Se phases isolated contain recognizable $[Mo_3(\mu_2-Se_2)_3(\mu_3-Se)]^{4+}$ clusters connected by bridging selenide or polyselenide ligands. This extraordinarily stable $[Mo_3(\mu_2-Se_2)_3(\mu_3$ $Se_2_3(\mu_3-Se)$ ⁴⁺ trinuclear core contains a triangular cavity created by the selenium atoms of the μ_2 -Se₂²⁻ ligands which has the hitherto unrecognized property of attracting negatively charged species such as Se^{2-} or Se_x^{2-} ligands.

Hydrothermal synthesis with polychalcogenide ligands is a feasible and convenient technique to novel cluster or polymeric phases. Our work in this system alone points to an enormous wealth of new and different K/Mo/Se phases to be discovered. This synthesis is applicable to any cation/metal/chalcogenide system and thus has a very broad scope. We believe that future work in this new area of chalcogenide synthesis will lead to an abundance of novel structure types which may rival, in number, those of zeolites.

Acknowledgment. Financial support from the National Science Foundation for a Presidential Young Investigator Award is gratefully acknowledged. The X-ray instrumentation used in this work was purchased in part with funds from NSF Grant CHE-8908088. A generous gift from the EXXON Corp. is also acknowledged. M.G.K. is an A. P. Sloan Fellow (1991-1993). This work made use of the SEM facilities of the Center for Electron Optics, Michigan State University.

Supplementary Material Available: Tables of crystallographic data and structure refinement for K2M03Se18 and K8M05Se40.4H2O, calculated and observed X-ray powder diffraction patterns, atomic coordinates of all atoms, and anisotropic and isotropic thermal parameters of all atoms for $K_2Mo_3Se_{18}$ and all non-hydrogen atoms for $K_8Mo_9Se_{40}$ 4H₂O (18) pages); listings of calculated and observed $(10F_o/10F_c)$ structure factors (41 pages). Ordering information is given on any current masthead page.

Contribution from the Institute of Chemistry, Academia Sinica, Taipei, and Departments of Chemistry, National Taiwan Normal University, Taipei, and National Chung Hsing University, Taichung, Taiwan, Republic of China

Hydrothermal Synthesis and Structural Characterization of Two Calcium Vanadium(III) Phosphates: $Ca_2V(PO_4)(HPO_4)_2 H_2O$ and $Ca_2V(PO_4)(P_2O_7)$

K. H. Lii,^{*,†} N. S. Wen,[†] C. C. Su,[†] and B. R. Chueh[§]

Received August 15, 1991

The new phosphate $Ca_2V(PO_4)(HPO_4)_2 \cdot H_2O$ and the dehydrated compound $Ca_2V(PO_4)(P_2O_7)$ have been synthesized hydrothermally at 230 and 450 °C, respectively, and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. Crystal data: Ca₂V(PO₄)(HPO₄)₂·H₂O, monoclinic, C2/c, a = 7.531 (2) Å, b = 15.522 (4) Å, c = 9.149 (2) Å, $\beta = 113.52$ (2)°, Z = 4, R = 0.0215 for 954 unique reflections; $Ca_2V(PO_4)(P_2O_7)$, monoclinic, $P2_1/c$, a = 6.391 (2) Å, b = 6.6362 (9) Å, c = 19.071(2) Å, $\beta = 99.26$ (2)°, Z = 4, R = 0.029 for 1389 unique reflections. The structure of the hydrated compound consists of * [V(PO₄)_{2/2}(HPO₄)_{4/2}] along the [101] direction, which are held together by hydrogen bonding and O-Ca-O bonds. The structure of the dehydrated compound contains intersecting channels where the calcium atoms are located. The framework consists of corner-sharing VO₆ octahedra, PO₄ tetrahedra, and P₂O₇ groups. The connectivity formula is $\frac{1}{3}Ca_2[V(PO_4)_{2/2}(P_2O_7)_{1/3}(P_2O_7)_{2/3}]$.

Introduction

We have recently found a number of new compounds in the alkali-metal vanadium phosphate system using high-temperature solid-state reactions. Compounds such as $Cs_2V_3P_4O_{17}$, β - $K_2V_3P_4O_{17}$, 2A_2VOP_2O_7 (A = Cs, Rb), 3AVP_2O_7 (A = Li-Cs), $^{4-6}$ NaVOPO₄,⁷ and $RbV_3P_4O_{17+x}^8$ were isolated. These phosphates often adopt tunnel or layer structures with the alkali-metal cations located in the tunnels or between the layers. Since the nature of the alkali-metal cations plays an important role in the crystal structures of these compounds, we have been interested in the synthesis and structural characterization of vanadium phosphates with divalent cations. Recently, we synthesized $Zn_2VO(PO_4)_2$ which contains a dimer of edge-sharing ZnO₅ square pyramids.⁵ However, our efforts to grow crystals of vanadium phosphates containing alkaline-earth metals by the solid-state method have been unsuccessful, probably due to their very high melting points. Since the hydrothermal method is particularly suited for the synthesis of low-temperature phases and is also useful for the crystal growth, we have also been applying hydrothermal techniques to the synthesis of vanadium phosphates. Recent examples of vanadium phosphates from hydrothermal reactions include $K_2(VO)_2P_3O_9(OH)_3$ ·1.125H₂O,¹⁰ K₂(VO)₃(HPO₄)₄,¹¹ β -LiVO- PO_4 , ¹² $A_{0.5}VOPO_4$, xH_2O (A = Na, x = 2.0; A = K, x = 1.5), ¹³ and Ni_{0.5}VOPO₄, ^{1.5}H₂O.¹⁴ We have extended our research aimed at synthesizing vanadium phosphates containing alkaline-earth metals by the hydrothermal method. At this time, we are able

[†]Academia Sinica.

to grow crystals of calcium vanadium phosphates. To our knowledge, calcium vanadium phosphates are rare and up to now only the mineral sincosite, $Ca(VO)_2(PO_4)_2 \cdot 5H_2O$, has been reported.¹⁵ This paper describes the hydrothermal synthesis and structural characterization of $Ca_2V(PO_4)(HPO_4)_2 H_2O$ and the dehydrated compound $Ca_2V(PO_4)(P_2O_7)$.

Experimental Section

Synthesis. Ca(OH)₂ (GR, Merck), Ca₃(PO₄)₂ (Merck), V₂O₃ (99.9%, Cerac), P_2O_5 (99.9%, Cerac), and H_3PO_4 (85%, Merck) were used as received. The conditions for the crystal growth of $Ca_2V(PO_4)$ (HP- $O_4)_2 H_2O$ were as follows. A mixture of 1.0460 g of Ca(OH)₂ (14.12

- (1) Lii, K. H.; Wang, Y. P.; Wang, S. L. J. Solid State Chem. 1989, 80, 127

- Lii, K. H.; Tsai, H. J.; Wang, S. L. J. Solid State Chem. 1990, 87, 396.
 Lii, K. H.; Wang, S. L. J. Solid State Chem. 1989, 82, 239.
 Lii, K. H.; Wang, Y. P.; Chen, Y. B.; Wang, S. L. J. Solid State Chem. 1990, 86, 143.

- Wang, Y. P.; Lii, K. H.; Wang, S. L. Acta Crystallogr. 1989, C45, 673.
 Wang, Y. P.; Lii, K. H. Acta Crystallogr. 1989, C45, 1210.
 Lii, K. H.; Li, C. H.; Chen, T. M.; Wang, S. L. Z. Kristallogr. 1991, 197, 67
- (8) Lii, K. H.; Lee, C. S. Inorg. Chem. 1990, 29, 3298.
 (9) Lii, K. H.; Tsai, H. J. J. Solid State Chem. 1991, 90, 291.
 (10) Lii, K. H.; Tsai, H. J. Inorg. Chem. 1991, 30, 446.
 (11) Lii, K. H.; Tsai, H. J. J. Solid State Chem. 1991, 91, 331.

- (12) Lii, K. H.; Li, C. H.; Cheng, C. Y.; Wang, S. L. J. Solid State Chem.,
- in press. (13) Wang, S. L.; Kang, H. Y.; Cheng, C. Y.; Lii, K. H. Inorg. Chem. 1991, 30. 3496.
- Lii, K. H.; Mao, L. F. J. Solid State Chem., in press.
- (15) Zolensky, M. E. Am. Mineral. 1985, 70, 409.

¹National Taiwan Normal University.

¹National Chung Hsing University.